Parallel Local Approximation MCMC for Expensive Models
نویسندگان
چکیده
منابع مشابه
Local Derivative-Free Approximation of Computationally Expensive Posterior Densities
Local Derivative-Free Approximation of Computationally Expensive Posterior Densities Nikolay Bliznyuk a , David Ruppert b & Christine A. Shoemaker c a Department of Statistics, University of Florida, Gainesville, FL, 32611 b School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, 14853 c School of Civil and Environmental Engineering, and School of Operations R...
متن کاملGeneralizing Elliptical Slice Sampling for Parallel MCMC
Probabilistic models are conceptually powerful tools for finding structure in data, but their practical effectiveness is often limited by our ability to perform inference in them. Exact inference is frequently intractable, so approximate inference is often performed using Markov chain Monte Carlo (MCMC). To achieve the best possible results from MCMC, we want to efficiently simulate many steps ...
متن کاملMCMC for State Space Models
In this chapter we look at MCMC methods for a class of time-series models, called statespace models. The idea of state-space models is that there is an unobserved state of interest the evolves through time, and that partial observations of the state are made at successive time-points. We will denote the state by X and observations by Y , and assume that our state space model has the following s...
متن کاملAsymptotically Exact, Embarrassingly Parallel MCMC
Communication costs, resulting from synchronization requirements during learning, can greatly slow down many parallel machine learning algorithms. In this paper, we present a parallel Markov chain Monte Carlo (MCMC) algorithm in which subsets of data are processed independently, with very little communication. First, we arbitrarily partition data onto multiple machines. Then, on each machine, a...
متن کاملA parallel implementation of MCMC
We implement a parallel MCMC method based on the ensemble samplers proposed by Jonathan Goodman and Jonathan Weare [1]. The new algorithm has several advantages over standard MCMC method. We made some numerical experiments and test the efficiency and strong/weak scalability of the parallel method. The parallel algorithm we implement is based on the MCMC hammer [2]. 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2018
ISSN: 2166-2525
DOI: 10.1137/16m1084080