Parallel Local Approximation MCMC for Expensive Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Derivative-Free Approximation of Computationally Expensive Posterior Densities

Local Derivative-Free Approximation of Computationally Expensive Posterior Densities Nikolay Bliznyuk a , David Ruppert b & Christine A. Shoemaker c a Department of Statistics, University of Florida, Gainesville, FL, 32611 b School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, 14853 c School of Civil and Environmental Engineering, and School of Operations R...

متن کامل

Generalizing Elliptical Slice Sampling for Parallel MCMC

Probabilistic models are conceptually powerful tools for finding structure in data, but their practical effectiveness is often limited by our ability to perform inference in them. Exact inference is frequently intractable, so approximate inference is often performed using Markov chain Monte Carlo (MCMC). To achieve the best possible results from MCMC, we want to efficiently simulate many steps ...

متن کامل

MCMC for State Space Models

In this chapter we look at MCMC methods for a class of time-series models, called statespace models. The idea of state-space models is that there is an unobserved state of interest the evolves through time, and that partial observations of the state are made at successive time-points. We will denote the state by X and observations by Y , and assume that our state space model has the following s...

متن کامل

Asymptotically Exact, Embarrassingly Parallel MCMC

Communication costs, resulting from synchronization requirements during learning, can greatly slow down many parallel machine learning algorithms. In this paper, we present a parallel Markov chain Monte Carlo (MCMC) algorithm in which subsets of data are processed independently, with very little communication. First, we arbitrarily partition data onto multiple machines. Then, on each machine, a...

متن کامل

A parallel implementation of MCMC

We implement a parallel MCMC method based on the ensemble samplers proposed by Jonathan Goodman and Jonathan Weare [1]. The new algorithm has several advantages over standard MCMC method. We made some numerical experiments and test the efficiency and strong/weak scalability of the parallel method. The parallel algorithm we implement is based on the MCMC hammer [2]. 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification

سال: 2018

ISSN: 2166-2525

DOI: 10.1137/16m1084080